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ABSTRACT. This paper is concerned with the optimal consensus control of
discrete-time multi-agent systems with multiplicative noise. The sufficient con-
dition for the existence of a parameterized generalized algebraic Riccati equa-
tion (ARE) is first developed. Then, the sufficient condition on the control
gain, the communication topology graph, and the critical value of the param-
eterized generalized ARE’s parameter for mean square consensus are derived.
Finally, the explicit control strategy is given to to guarantee consensus and
minimize the performance index simultaneously.

1. Introduction. In the past twenty years, the consensus problem of multi-agent
systems (MASs) has been paid much attention. In [22], Vicsek et al. demonstrat-
ed an interesting phenomenon: particles exhibit collective motion at high particle
density and low localization noise. Jadbabaie et al. provided a theoretical expla-
nation of the Vicsek model in [10]. Then, Olfati-Saber and Murray [16] considered
first-order integrator dynamics and two control protocols were designed to solve
the consensus problems for continuous-time and discrete-time systems, respectively.
Ren [18] and He et al. [7] proposed consensus algorithms for second-order integrator
dynamics and higher-order integrator dynamics, respectively. Different from pre-
vious unsigned graphs, Altafini [1] studied the consensus problem of signed graphs
and showed that the system achieves bipartite consensus when the information ex-
change topology is structurally balanced. Additionally, Hu et al. [8] investigated
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the bipartite consensus of MASs with time delays in the presence of antagonistic
interactions. Now, MASs have been widely used in various fields, such as sensor
networks, clustering of social insects, and unmanned aerial vehicles [33].

Note that the above significant progress addressed the consensus problem of per-
fect models, where each agent can obtain precise information from their neighbors.
However, in practical applications of MASs, uncertain communication environments
and measurement noises are inevitable [35]. Therefore, it is necessary to consider
measurement noises when investigating multi-agent consensus problems. For MASs
with multiplicative noise, Li et al. [14] gave some stochastic consensus conditions
under connected graphs and provided the upper and lower bounds for the conver-
gence rate. The consensus problem of continuous-time MASs in the presence of
both communication latency and measurement noise was investigated in [36]. Zong
et al. [34] gave the upper bound for delay terms to ensure the pth moment is expo-
nentially stable. In [4] and [5], Djaidja et al. studied the leader-following consensus
of MASs with and without delay, respectively. For MASs driven by additive noise,
in [12] Li and Zong derived some sufficient conditions to ensure stochastic weak
group consensus, stochastic strong group consensus, and hybrid group consensus,
respectively. They further considered hybrid group consensus subjected to both
communication latency and additive noise in [13]. In the presence of additive noise
and time delay, Djaidja et al. [6] investigated the leader-following consensus. The
previous work [37] established the consensus of both discrete-time first-order and
second-order MASs with multiplicative noises. However, for discrete-time general
linear stochastic MASs, little is known about the control design theory since the
corresponding parameterized generalized algebraic Riccati equation (ARE) has not
been well established.

Optimization problems of stochastic systems and MASs also attracted some at-
tention. Because of the existence of the noise, the controller in deterministic systems
is no longer applicable [27]. Moreover, it is difficult for stochastic systems to obtain
the explicit controller. For single stochastic systems, Zhang et al. [28] solved the
optimal control problem of discrete-time stochastic systems with delay and mea-
surement noise. Huang et al. [9] proposed an optimal controller for discrete-time
systems driven by multiplicative noise based on an ARE. Wang et al. [24] inves-
tigated the optimal problem of a single system involving both state and control
dependent multiplicative noise and input delay. For MASs, Movric and Lewis [15]
examined the optimality of some distributed cooperative control protocols by a pos-
itive semi-definite quadratic performance criterion. Zhang et al. [32] studied the
distributed optimal control of MASs with general linear dynamics. Jin et al. [11]
investigated the distributed optimal consensus of stochastic continuous-time MASs
with multiplicative noises. It is seemingly true that ARE for single discrete-time
stochastic systems can be used to design the optimal control of discrete-time sto-
chastic MASs. However, it is worth noting that the decoupled subsystems of MASs
depend on the eigenvalues of the Laplace matrix of the communication graph. Thus,
the classical ARE can not be used for stochastic MASs. This motivates us to devel-
op optimal consensus control of discrete-time stochastic MASs with multiplicative
noise by establishing a parameterized generalized ARE.

Motivated by the above discussion, this work studies the optimal consensus con-
trol of discrete-time MASs with multiplicative noise. Different from [28, 9], where
the classical stochastic ARE was investigated, we first propose a parameterized
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generalized ARE with a parameter. By a recursive scheme, we establish the suffi-
cient condition for the existence of positive definite solutions to the parameterized
generalized ARE. Moreover, the domain of the parameter is also obtained for pa-
rameterized generalized AREs to have the positive definite solution. Then, we give
the control design of consensus control of MASs with multiplicative noises based
on the relative measurements resorting to the parameterized generalized ARE. The
explicit relationship between the control gain and the parameter in the parameter-
ized generalized ARE is revealed. Finally, the optimal consensus control strategy
is developed to minimize a cost function based on the absolute state and relative
measurements.

The rest of this paper is organized as follows. Section 2 gives the formulation
of the optimal consensus problem and some preliminaries, mainly the algebraic
graph theory. Section 3 investigates the sufficient condition for the parameterized
generalized ARE to have a positive definite solution. Section 4 and Section 5 give
the mean square consensus and the optimal consensus of the MASs, respectively.
Some simulation results are presented in Section 6. Section 7 concludes the paper.

Notation: R™ denotes n-dimensional column vectors. R™*™ denotes the space
of n x m real matrices. 1y stands for the n-dimensional unit column vector. I,
is the identify matrix. A’ denotes the transpose of A. M > 0 means that the
symmetric matrix M is positive-definite. M > 0 means that the symmetric matrix
M is positive-semidefinite. E[X] is the mathematical expectation of X. Range (M)
denotes the range of matrix M. ® denotes the Kronecker product. For a matrix
G, G denotes the Moore-Penrose inverse [17, 20], satisfying GGG = G,GTGGT =
Gt (GGY) = GGt and (GTG) = G1G.

2. Preliminaries and problem formulation.

2.1. Algebraic graph theory. We shall restrict our discussions mainly to the
connected undirected graph G = (V, M), where V denotes the set of notes and
the adjacency matrix M = [a;;] € RV*N. If any two distinct agents of G can
be connected via a path, then we call an undirected graph G connected. Also,
d; = Zjvzl ai; is the degree of i. The Laplacian matrix is £L = ® — M, where
D =diag{dy, -+ ,dny}. We denote 0 = \; < --- < Ay as the eigenvalues of L. It is
well known that L always has a zero eigenvalue.

2.2. Problem formulation. Consider an MAS with N agents. The dynamics of
agent 7 are

z;(k+1) = [Az;(k) + Bu; (k)] + [Cx; (k) + Du; (k)] w(k), k= 0,1, ..., (1)

where i = 1,..,N, z;(k) € R", A € R**" B € R™™ ( ¢ R™" D € R™™,

u;(k) € R™ is the input control of the ith agent, {w(k),k =0,1,2...} is a sequence

of real random variables defined on a complete probability space (Q, F, {Fi x>0, P),

E{w(k)} =0, E{w?(k)} = 1, and E{w(k)w(j)} = 0 for k # j. Let X (k) = [z} (k),
-, @y (k)])’. The cost function is given by

Ji = By [ (k)Qui(k) + uj (k) Ruy (k)] (2)

k=0
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where @ and R are symmetric positive semidefinite matrices with appropriate di-
mensions. For the MAS (1), we define the admissible control set

Upg = {u(k) | u(k) € £%(R™) and EZ lu(k)||> < oo} .

k=0

Remark 2.1. Here, we do not require the real random variables {w(k), k = 1,2...}
to be independent and identically distributed. In fact, one can assume the martin-
gale difference for the random sequence, see [25] for more details.

The main objective of this paper is to find a distributed control protocol u;(k) €
Uaq such that the MAS (1) achieves consensus and minimize the cost function
Zﬁil Ji. Because of the existence of measurement noise, the consensus is considered
in the mean square sense, which is defined as follows.

Definition 2.2. The MAS (1) is said to achieve mean square consensus if klim
e el

E||zj(k) — z:(k)||> =0,Vi,j =1,..., N, for any given initial value X(0).

3. A parameterized generalized algebraic Riccati equation. The algebraic
Riccati equation is an important tool in control design for feedback stabilization of
deterministic linear systems [2, 30] and stochastic systems [11, 23]. In this work, we
also resort to a parameterized generalized ARE to design a control such that the
mean square consensus is achieved and the cost function Zi\; Ji is minimized.

In this section, we consider the parameterized generalized ARE

0 = APA+CPC—-~(APB+C'PD)
X (I, + D'"PD + B’PB)_1 (B"PA+ D'PC)+ 1, — P,y € (0,1). (3)
First, we need to find the sufficient condition for the above parameterized general-

ized ARE to have a solution. Before establishing the existence of the solution P,
we consider the operator

H,(X) = AAXA+C'XC+1,
—v(AXB+C'XD) (I, + BXB+D'XD) ' (BXA+ D'XC). (4)
We also define
(K, X)=(1-7)(AXA+C'XC+1,) +y(M{ XM, + MjX My + I, + K'K)
and
(K, X) =M XM, + M,XM, + 1, + K'K,
where My = A+ BK, Ms; = C' + DK. Then, we have the following lemmas.

Lemma 3.1. The following statements are true:
1) If0 <y <7y <1, then Hy, (X) > Hq, (X);
2)If X >Y, then H\(X) > Hy(Y), v € (0,1).

Proof. 1) Note that (A’XB + C'XD) (I, + BXB+ D'XD) (B XA+D'XC) >
0. Then,
H,(X) = AXA+C'XC+1,
— (AXB+C'XD)(I, + BXB+D'XD) (B XA+ D'XC)
AXA+C'XC+1,
v (AXB+C'XD)(I,, + BXB+D'XD) (B XA+ D'XC)

Y
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= H’>’2 (X)

2) If X >V, then H.(X) = p(Kx,X) > o(Kx,Y) > o(Ky,Y) = H,(Y). O

Lemma 3.2. The following statements are equivalent:
1) 3X > 0 such that X > H.(X);
2) AK, X > 0 such that X > o(K, X);
3) 3V and 0 < W < I such that the following LMI holds

W E  JFF JT=AWA JT=AW
VE W
Q,(W,V) = VIF W >0,
VI — 7AW W
VI —ACW W

where v € (0,1), E = AW + BV, and F = CW + DV.

(5)

Proof. 1) = 2). Letting K = Kx = — (I,, + D’XD + B'XB) " (B'XA+ D'XC),
we can obtain from the definitions of H,(-) and ¢(-,-) that X > H,(X) = ¢(K, X).

2) = 1). Note that argminge(K,X) = argmingV(K,X). Since X > 0, it
follows that U(K, X) is quadratic and convex in the variable K. Therefore, we can

obtain the minimum value by solving a\pgf;){) =0, and then

Kx=-In+D'XD+BXB) " (BXA+DXC).

Hence, we have X > ¢(K, X) > ming (K, X) = ¢ (Kx,X) = Hy(X) for any K.

2) & 3). From X > o(K,X) = (1-—7)(AXA+C'XC+ L)+y(M{XM; +
MJXMy + I, + K'K), we obtain X — (1 —7) (A/XA+C'XC)> (M XM; +
M{XMs + K'K) + I, > I, > 0. Using the Schur complement decomposition,
we have

X O AM] M, JI=AA JT=AC
\/’7M1 X!
o= M X! > 0.
JT=74 X1
JT=7C X1

This is equivalent to

X1 oo0oo0o0 X1 0000
0 I 0 0 0 0 I 0 00
0 0 I 0 0]86 0 0 I 00
0 0 0 I O 0 0 0 I 0
0 0 0 0 I 0 0 0 0 I

Xfl\/TyXflf\ﬂ \/TyX*iMQ’ VI—AXtA JT—AX I
VIM1X™ X~
= VM X1 X! > 0.
VI—yAX! X!
VI—7CX 1 Xt
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Letting W = X1 >0,V =KX '), E=AW + BV, and F = CW + DV, the
previous LMI is equivalent to

w VYE' A F JT—AWA JT—AW
VIE w
QW V)= VIF W > 0.
V1I—~vAW w
V1—~CW W
Since Q,(aW,aV) = a2, (W,V), W can be restricted to W < I. The proof is
complete. O

Lemma 3.3. Define L(X) = (1 —7) (A XA+ C'XC) +~(M{XM, +M,XM),
where M1 = A+ BK and My = C + DK. Then, if there exists a matriz X >0
such that X > L(X), the following statements are true:
a): For all V >0, limy_,o L*(V) = 0;
b): The sequence Zypy1 = L(Zy) + U is bounded for all U > 0 and any initial
value Zy > 0.

Proof. Tt can be seen that L(X) > 0 for all X > 0. Also, if X > Y, we have
L(X) > L(Y). For given V > 0, we choose by > 0 such that V < by X, and then
we have L*(V) < by L*(X). We choose r € [0,1) such that L(X) < rX. Then, it
can be shown that L?(X) < rL(X) < r?X and L¥(X) < 7*X. Thus, we have

0 < LFV) <byLF(X) < byrF X,

which implies limy_,, L¥(V) = 0, that is, statement a) holds. Also, there exists
€10,1), by > 0, and bz, > 0 such that

Zn = Hgm+§yﬂm

< (bZO )+ Z by L (X )
< <bZO7“ -+ Z byr )
S |:b bU 1—7r ):| X
1—7r
< @ ),
which implies statement b). O

Based on the lemmas above, we now establish the existence of the positive solu-
tion to the parameterized generalized ARE (3) by constructing the corresponding
recursive scheme

Pi1 = APA+C'PC+I,—v(APB+C'PD)
X (I, + B'P.B+ D'P.D) " (BP,A+ D'P,C),t=0,1,2... (6)

Then, we have P41 = H, (P;) = HY™ (Py) from the definition of H,(-), where
H!t(Py) represents the value after t + 1 iterations of Py.
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Theorem 3.4. If there exist matrices K and X > 0 such that X > o(K, X), then

the Riccati iteration (6) converges for any initial condition Py > 0, and the limit is

independent of Py, denoted by tlim P = tlim H,ty(Po) =P, i.e., the parameterized
— 00 — 00

generalized ARE (3) admits a solution.

Proof. We first prove that P, = H;(PO) is bounded for any Py > 0, i.e., P, < Sp, for
certain Sp, > 0, if there exist matrices K and X > 0 such that X > ¢(K, X). Let
L(X)=(1-7)(AXA+C'XC) 4+~ (M{XM, + M}X M), where My = A+ BK
and My = C + DK. We can see that

X > (K, X) = L(X) + I, + vK'K > L(X).
Consequently, L satisfies the condition of Lemma 3.3. We have
Pt+1 = H‘y (Pt) < @(K,Pt) = L(Pt)+_[n+’yk/}? = L(Pt)+U7

where U = I, + yK'K > 0. From Lemma 3.3, P; is bounded.

Now, we show that the Riccati iteration (6) converges for any initial condition
Py > 0 by three steps.

First, we initialize the Riccati iteration (6) at Uy = 0, i.e., Uy = HF(0). One
can see that 0 = Uy < Uy = I,, and Uy = H, (Uy) < Hy (U1) = Us from Lemma
3.1. Then, we have 0 = Uy < Uy < Uy < -+ < Sy,. One can see that the sequence
converges and the limit is denoted by limy_,oc Ux = P, that is, the fixed point P
satisfies P = H.,(P).

Then, we initialize the Riccati iteration (6) at Ty > P. Define L(T) = (1 —
WA TA+C'TC)+~(M{TM; + M;TMs), where My = A+ BKp, My = C+DKp,
and Kp = —(I,, + D'PD +B'PB)~! (B'PA+ D'PC). Then, we have

P=H,P)=L(P)+1,+vKpKp > L(P).
Consequently, L satisfies the condition of Lemma 3.3 and we have limy,_, oo L* (T) =
0, VT > 0. One can see that 7y = H, (Ty) > H.,(P) = P. Further, we obtain
Ty = H¥ (Ty) > P,V k > 0. Observe that

0 < (Ty —P)=H,(T}) — Hy(P)
= ¢(Kr,,Ti) — ¢ (Kp, P) < o(Kp,Ti) — p(Kp, P)
= (1= [A(Tx—P)A+C' (T, — P) C]
+v [M] (T, — P) My + My (Ty, — P)Ms]
= L(T,-P).

Thus, we have 0 < limg_o0(Tht1 — P) < limgo0 L (T}, — P) = 0, which implies
that the sequence HY (Tp) also converges when initializing at Ty > P.

Finally, we initialize the Riccati iteration (6) at any given Py > 0. Denote Uy = 0,
TO = PO + p and UO < Po < To. Then, we have Hay (Uo) < H’Y (PQ) < H’Y (To) from
Lemma 3.1, i.e., Uy < P; < Ty. Further, we obtain U, < P, < T,V k > 0.

Therefore, limy_, o, Py = P. The proof is complete. O

Remark 3.5. The condition proposed in Theorem 3.4 is stronger than the mean
square stabilizability. In fact, the generalized ARE (3) with v = 1 admits a solution
equal to the mean square stabilizability [9]. However, the mean square stabilizability
can not guarantee the existence of a solution to the parameterized generalized ARE
(3) with v < 1.
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Theorem 3.6. Assume that v* = argmin,y[EWS > 0| P> H,(P)] € (0,1) is well
defined. Then, the parameterized generalized ARE (3) admits a solution P > 0 for
any v € (v*,1).

Proof. When v = ~*, there exists a matrix P > 0 such that P > H.-(P). From
Lemma 3.2, there exists matrices K, X > 0 such that X > ¢(K, X). Therefore, we
obtain that P41 = H, (P;) converges from Theorem 3.4, that is, the parameterized
generalized ARE (3) admits a solution. If v = 4 € (%, 1), then H,.(P) > H.,(P)
from Lemma 3.1 and P > H.,-(P) > H.,(P). Similar to the case of v = ~*,
we obtain that the parameterized generalized ARE (3) admits a solution, which
completes the proof. O

Remark 3.7. Combining Theorem 3.6 and Lemma 3.2, v* can be numerically
computed by v* = argmin, {Q, (W, V) > 0,0 <W < I}, where Q. (W, V) is defined
in (5).

Remark 3.8. Note that Theorem 3.6 requires v* € (0,1) to be well defined. This
together with Theorem 3.4 implies the existence of the positive definite solution
P. In fact, the existence condition v* € (0,1) depends on the coefficient matrices
A, B,C,D. To see it clearly, we consider the case B = D,C = 0, that is, the
stochastic system has the form

xz(k+1) = Az(k) + Bu(k) + Du(k)w(k). (7)
It is not difficult to obtain its ARE
1 1
P =A'PA+I, - JA'PB(I, + B'PB)'B'PAy = 3. (8)

It is proved in [19, Lemma 5.4] for unstable A that if (A, B) is controllable and
IL;| A (A)%| < 2, then (8) has a unique P > 0, where A¥(A) are the unstable eigen-
values of A. Without the two conditions, (8) may not admit the positive definite
solution for v € (0,1), and then +* is unavailable.

4. Mean square consensus. In this section, we will derive the condition for mean
square consensus so as to solve the optimal consensus control problem in the next
section.

We use the classical feedback control protocol

N
wi(k) = K Y aij (z;(k) —2i(k)) 9)
j=1

where K € R™*" is the gain matrix to be designed.
Applying Theorem 3.6 produces the following theorem, which gives a sufficient
condition for MAS (1) under (9) to achieve mean square consensus.

Theorem 4.1. Ifv* = argmin,, [3P > 0| P > H,(P)] € (0,1) is well defined, then
for any 1 >~ > ~*, mean square consensus can be achieved under control protocol
(9) with consensus gain

K =k(I,,+ D'PD + B'PB)"' (B'PA+ D'PC) (10)
where
AT LIS Y Al (11)
)\2 /\2 )\N /\N

P satisfies the parameterized generalized ARE (3).
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Proof. With protocol (9), the closed-loop subsystem takes the form

N
zi(k+1) = {Axi(k) +BK Y ai; (z;(k) — xi(k))]

j=1
N
+ C.%‘Z(k) + DKZG@]' (.’lﬁj(k) — .Z'l(k‘))] w(k) (12)
We can rewrite the above equation as
X(k+1)=[In®A—-L® (BK)] X(k)+ [In ® C — L& (DK)] X (k)w(k).

Denote the consensus error
| X
6z(k) Nmzz: 7 7'_1727"'aN)
and consensus error vector d(k) = [07(k),--- , 0% (k)]". We have

o10) = | (1 - }Vmsv) o1,] X(0)
which implies
S(k+1)=[IN® A— L& (BK)| (k) + [In ® C — L® (DK)] §(k)w(k).

Define the unitary matrix ¥ = [1—\/%, Pay QSN} , where ¢; is the unit eigenvector of

L associated with the eigenvalue \;, i.e., ¢.L = \;¢., ¢; € RY. L can be transformed
into a diagonal form ¥/ LU = diag {0, A2, -+ , Ay }. Denote 6(k) = (¥ ® I,,) §(k) and

5(k) = [Sg(k), - 75§V(k)]/. Then, we have &; (k) = 0 and
S(k+1) = (Y&I,) 6(k+1)
= [In®A—diag {0, \2BK,--- , Ay BK}|3(k)
+[In®C - dlag{O,)\gDK, -, ANDEK}] d(k)w(k).

Letting &(k) = {Sé(k), e ,Sﬁv(k)}/, we have

§(k +1) = Ri&(k) + Mr&(k)w(k), (13)

where Ry = Iy 1 ® A—A®RBK, M, = Iy 10C—-A®DK, A =diag{)\s, -+ , AN}
Consider the Lyapunov function

V(k) =& (k) (In-1 ® P) &(k), (14)

where P satisfies the parameterized generalized ARE (3). Substituting (13) into
(14) and taking the expectation, we have

EV(k+1)=E{(k)[Ry(In-1 @ P) Ry +M{ (In-1 @ P) MiJ¢(R)},  (15)
which implies
EV(k+1)—EV(k) = E{¢K) R (IN-1®P)Ry
+M; (In—1 @ P) My — In—1 @ PIE(K)}
We multiply both sides by f**1, where 8 > 1, and we have
BMEV(k+1) — BXEV(K) < (BT — 8%) EV (k) + B*T B¢ (k) R (k),
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where R = Ry (INn_1 @ P)Ry + M{ (IN-1 @ P) M; — In_1 ® P. Then, we can
rewrite the above formula as

k k
BEEV(E+1) S EV(0) + ) (BT = 8°) EV(s) + Y BT EE/(5) Ra&(s).
s=0

s=0
It can be seen that EV (s) < ||P||[|£(s)||?>. Thus,

k k
BFHEV(k+1) < EV(0)+ (1=8")[IPID_ B + > B EE (5)Ro&(s)

s=0 s=0
k
< EV(0) + ) BB (s)Rag(s), (16)
s=0

where Rz = Ry + (1 — ﬁ_l) ||7D||IN_1.
Note that (1 — 87%) ||P||Ixy—1 > 0. Then there exists 3 > 1 such that R3 < 0 if
Ry < 0. In this case, we can obtain from (16) that

BFIEV (k + 1) < EV(0).
Noting that A (P)||E(k + 1)]|2 < V(k + 1), it follows that
Amin (P)BFHLE|€(k +1)|12 < BBV (E + 1) < EV(0).

Then, we have
EV(0)

2
Ell¢(k+ 1] < N (P)BFT (17)
Hence, one obtains that
lim Ell¢(k+1)|> = 0.
k—o0
This together with the definitions of £(k) and (k) implies
N 2
Jim B |l (k) ~ ]]LVlexm(k) =0. (18)

Therefore, mean square consensus will follow if Ry < 0.
Next, we prove that K = k(I,, + D'PD + B'PB)"" (B'PA+ D'PC) under
condition (11) can assure Rz < 0. It can be seen that Ry can be reformulated as

Ry = diag{ (A~ \2BK)'P (A~ XBK),- -,
(A= AvBR)'P (A~ AvBK) }
+diag { (€ = A2DK)'P (C = ADK) =P, -,
(C = ADK)'P (C = \DK) - P}.
This is is equivalent to
(A= NBEK)' P (A~ NBK) + (C— \DEK)' P (C - NDK)—P <0, (19)
where i = 2,--- , N. Substituting K = k (I, + D'PD + B'PB) "' (B'PA+ D'PC)

into (19), we can obtain that (19) can be ensured if
A'PA+ C'PC — (2\ik — \2k*) (A'PB + C'PD)
% (Im + D'PD + BPB) " (BPA+D'PC) —P <0, (20)
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where ¢ = 2,--- | N. By Theorem 3.6, we know that (20) admits a solution when
2X\;k — A2k? > ~*, that is, it holds for every \;, and then we have — V}\;W + )\% <

- <
k<5 71+

ﬁ. Now, the proof is completed. O

Remark 4.2. In this work, we consider the same gain matrix K for all agents.
However, the eigenvalues of the Laplace matrix may be different, and then the
corresponding ARE for the subsystems may have different parameters. Therefore,
we construct a parameterized ARE to examine the mean square consensus. This is
also considered in [11].

Remark 4.3. From [26], we know that the mean square exponential stability of the
MAS (1) implies the almost sure exponential stability. Moreover, (17) implies mean
square exponential stability of the MAS (13). Hence, the MAS (1) can achieve both
the mean square and almost sure consensus simultaneously under (10) and (11).

5. Optimal consensus. Based on the consensus result presented in the last sec-
tion, we are going to provide the optimal consensus control strategy to guarantee
mean square consensus and minimize the performance index simultaneously.

Firstly, define the following ARE
0=A'PA+Q-P+C'PC—-HGH, (21)

where H = BBPA+ D'PC,G = R+ B'PB + D'PD. For the convenience of the
following derivation, we denote

A=A-BG'HB=B(I-G'G),c=C-DG'H,D=D(I-G'G).

Here, we assume that Range(H) C Range(G), i.e., the regular case. For the optimal
control, we also define

Hy(X) = AXA+C'XCHI,
— Y(AXB+CXD)(I,, +BXB+DXD) ' (BXA+DXC).
The following theorem gives the optimal consensus control strategy.

Theorem 5.1. Assume that (21) has the solution P > 0, and v* = argmin,, [3P >

0P > 7-[7(75)} € (0,1) is well defined. Then, for anyy > v*, the optimal consensus
solution to minimize (2) is

ui(k) = —G'Hz;(k)+ (I — G'G) z(k), (22)

where
N
zi(k) = K Y ai (¢ (k) — 2i(k)),
j=1
K =k(In+ D'PD+ B'PB)”' (BPA+ D'PC),
k satisfies (11), and P obeys P = H~(P).
Proof. Note that
E {Z (2} (k +1)Px;(k + 1) — x;(k)P:ci(k))}
k=0
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and
Elz;(k+1)Pxi(k+1)] = E[(Az;(k) + Bui(k) + Cz;(k)wy + Du;(k)wy)’
P(Az;(k) + Bu;(k) + Cz;(k)wy + Du;(k)wy))
—  Ewl(k) [A'PA + C'PCla:(k)
(k) [A'PB + C'PD] (k)
+ul (k) [B'PB + D'PD]ui(k)
(

/
[
!/
K2
I
(2

(k) [B'PA + D'PC (k).

Substituting the above equalities into the cost function

Ji = EZ ) (k k) + uf (k) Rug (k)]
k=0

and using the MAS (1), we have

N N 00
SJi o= > EQ [#(k)Qui(k) + uj(k)Ru;(k) + xf(k + 1) Pa;(k + 1)
i=1 =1 k=0
N N
—a(k)Pi(k) + ) E(w;(0)Py(0) = Y B( lim a}(k)Pai(k))

i=1 i=1
N oo
= Y Y E{a}(k)[Q— P+ A'PA+C'PCla;(k)
] k=0
+a}(k) [A'PB + C'PD] u;(k) + u; (k) [B'PB + D'PD + R)u;(k)

ul(k) [B'PA+ D'PC)z }—l—ZE{x )Pz:(0)}

_ i E {kli_{rolo x;(k)Pmi(k)} -

=1
Denote M; = YN E{a}(0)Pz;(0)} and My = S| E {limy 00 2} (k) Pzs(k)}.

Applying
ARE (21), we have

N N oo

Moo= 3N Bl () H'G Hai (k) + ) (k) H s (F)

- f&;lznguz(k‘) +ui(k)Hai(k)} + My — M
N oo

= > > Bf{[ui(k) + Gt Hai(k)) Glui(k) + GTHa;(k)]} + My — M.
1=1 k=0
It can be verified that

Z E{[u;(k) + GTHa; (k)] Glu; (k) + GTHa;(k)]}
= > B{ (k) + G Hai (k) — (1 = G1G) (k)] Gl (k)
=0

+_GTHxi(k) (- GTG)zi(k)]}, (23)
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where z;(k) is an arbitrary vector with compatible dimension. Then, the opti-
mal controller is given by the first equation of (22) because of the positive semi-
definiteness of G. Substituting (22) into MAS (1), it yields that

xzi(k+ 1) = [Az; (k) + Bz;(k))] + [Cxi(k) + Dz;i(k))] w(k). (24)
From Theorem 3.6, we have P = #.,(P), which has the form (3) with A, B,C, D
being replaced by A, B,C, D, respectively.
Let X (k) = [} (k), - 2\ (K)]", 0;(k) = zi(k) — & sz\;1 zi(k)(i=1,2,--- ,N),
and §(k) = [6)(k),--- , 0 (k)]'. By similar procedures as that of Theorem 4.1, (24)
can be rewritten as

Xk+1)=[IN®A-L® (BK)]X(k)+ [In®C—-L® (DK)] X (k)w(k).
We further obtain
dk+1)=[In®A-L® (BK)]|ik)+[In®C—L® (DK)]ik)w(k).
Select a unitary matrix ¥ = [1\/—%, ¢a,-++ ,On | such that O LU = diag {0, Ag, -+,
AN}, where ¢; satisfies ¢;L = N} for i = 2,...,N. Let §(k) = (¥ ® I,) (k) and
(k) = [5(k), (k)] . This yields that 5,(k) = 0 and

S(k+1) = [Iy®A—diag{0,\2BK, -, Ay x BK}]§(k)
+[Iny ® C — diag{0, M\oDK,--- ,ANDK}]o(k)w(k).

~ ~ !
Denote £(k) = [5’2(143), - ,55V(k)] . Then, we have

Eh+1)=[In-1@A-AN@BK]&(k) + [In—1 ®C— A@DK|{(k)w(k), (25)

where A = diag {Aa, -+ , AN}
Similarly, denote V (k) = £'(k) (In—1 ® P) &(k). Taking the mathematical expec-
tation of EV (k + 1), we obtain

EV(k+1)=E{(k)[Ry (IN-1P)R1 +M] (In_1 ® P) M1)¢(k)},
and
EV(k+1)—-EV(k) = E{k)[R,(In_1P)R1
+M] (In_1 @ P) My — In_1 @ PIE(K)},

where R = In_1 @ A— A®BK and M; = Iy_1 ® C — A ® DK. Note that (11)
holds. Tt yields that

APA+CPC— (2\ik — \}k*) (APB + C'PD)
x (D'PD + BPB)' (BPA+D'PC)—P
< APA+CPC—~(APB+CPD)
x (I, + D'PD + B'PB)”" (BPA+DPC)+ 1, —P =0.
Letting K = k (I,, + D'PD + B'PB)~" (B'PA + D'PC), we can obtain
(A—XNBE)' P (A-\BEK) + (C— MDK)' P (C— MDK) — P <0,
which can be reformulated as

Ry = diag{(A—\BE) P (A= XBK).,- -,
(A= ABE)'P (A AvBEK) }
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+diag{(c — /\QDK)’P (C—X\DK),---,
(¢~ AWDPEK)' P (€~ \WWDK) } <.

Then, similar to the derivation process of Theorem 4.1, we can obtain that mean
square consensus can be achieved for the MAS (1).

In addition, letting z;(k) = & Zfil z;(k), where z(0) = + Zil x;(0), we have
z(k+1) = Ay(k) + Cz(k)w(k).
Denote V (k) = E [2/(k)Pz(k)] > 0, where P satisfies ARE (21). Then we obtain

V(k+1)-V(k) = FE[(k)(APA+CPC—P)z(k)]
= E{(k)[-Q-GH'RH'G] z(k)}
S 07

which implies
lim V (k) = klim E[Z'(k)Pz(k)] =0,
—00

k—oc0

where 6 > 0 is a constant. The consensus value of MAS (1) is given by (18), which
shows that

lim E [z)(k)Pxz;(k)] = lim E[2'(k)Pz(k)] = 6.

k—o0 k—o0

Thus, the optimal value is given by

N N
> Ji=>_ Exj(0)Pz;(0)] — ON.
i=1 i=1
O
Remark 5.2. For a single discrete-time stochastic system with the cost function
J = [2'(k)Qu(k) + u' (k) Ru(k)),
k=0

one can obtain that the optimal value is 2'(0)FPyx(0), where Py is the solution to
(3) with v = 1. For discrete-time stochastic multi-agent systems under the cost
function

N
W
i=1

we obtain the optimal value Zfil ;= Zfil E [z}(0)Pz;(0)] — ON, where P is the
solution to (3) with v € (0,1).

i=1 k=

6. Simulation example. Consider the MAS (1) and the cost function (2) with
A,B,C,D,Q, R as follows:
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which satisfy Range(H) C Range(G). Consider G = {V, M}, where V = {1,2,3,4}
and

M = [aij]4><4 =

— O~ O
O = O =
=
O = O =

Further, we obtain the Laplacian matrix
L prm—

and its eigenvalues: A\; = 0,\a = 2, A3 = 2, Ay = 4. Let initial values z,(0) =
[ 559 1.16 ], 22(0) = [ 457 —1.10 ', 23(0) = [ 0.79 —1.28 |', and z4(0) =
[ —5.24 —1.04]"

15.1473 0

Letting v = 0.86 > v* = 0.75, it can be calculated that P = [ 0 1.3333 |

8 8 ] by solving (3) and (21). We have
2 0 25 0
=[io]e=[% o]

0.5 0 0 0
C‘[o 0.5]’7)_[0 0]

Therefore, the condition of Theorem 5.1 is satisfied and the optimal consensus
control is

andP{

wh =] g g }K; (k) — ()

with K = k [ 0'7316 8 }, where k € [0.29,0.35]. Denote x2(k), z2(k) as the first
and second components of z;(k), respectively. As shown in Figure 1, Figure 2,
Figure 3, and Figure 4, the mean square consensus and almost sure consensus of

the system are achieved.

1.png K 2.png k

FIGURE 1. The trajectory of E||z;(k) — z1(k)||?, i = 2,3, 4.



170 XIAOFENG ZONG, MINGYU WANG AND JIFENG ZHANG

X300 - X2k
B0 -]k

x50 - Xkl
1x50k) - Xkl

Y
(k) - X3k}

1500 - 3k

=2,3,4
°

(K, i

a
1

(k) - x

3.png k 4.png 7 .
FIGURE 2. The trajectory of |z;(k) — x1(k)|, i = 2,3, 4.

7. Conclusions. In this work, we consider the optimal consensus control of discrete-
time MASs with multiplicative noise. Based on two Riccati equations, the sufficient
condition for mean square consensus and optimal consensus are given, respectively.
In our future research, we are going to investigate the optimal consensus corrupted
by both communication latency and multiplicative noise simultaneously. The coex-
istence of additive and multiplicative noise will also be studied. The optimal control
with unknown mean and variance of multiplicative noise is also an interesting topic
[31].
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