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Abstract— This paper studies the consensus problem
of high-order multi-agent systems (MASs) with binary-
valued communications and switching topologies. In order
to overcome the challenge of unknown states caused by
binary-valued communications, this paper constructs an
estimation-based consensus algorithm. First, a recursive
projection identification algorithm is presented to estimate
the neighbors’ states dynamically. Then, based on these
estimates, a consensus law is designed. By constructing
and analyzing two Lyapunov functions about estimation
error and state error, this paper establishes their relation,
to overcome the difficulty resulting from the coupling of the
estimation and control and less information due to switch-
ing topologies. Under the condition of jointly connected
topologies, it is proven that by properly selecting the step
coefficient, the estimates of states can converge to the
true states with a convergence rate as the reciprocal of the
iteration times. Besides, the MAS is proved to achieve weak
consensus and the consensus rate is also established as
the reciprocal of the iteration times. Finally, a simulation
example is given to validate the algorithm.

Index Terms— multi-agent system, high-order, binary-
valued communication, switching topology, consensus, re-
cursive projection identification algorithm

I. INTRODUCTION

In recent years, the consensus problem of multi-agent sys-
tems (MASs) has attracted increasing attention from scholars
across various fields [1]–[8], such as swarm formation for un-
manned aerial vehicles in engineering fields [1], the reputation
consensus of mobile nodes in communication fields [8], and
so on. In swarm scenarios, all agents dynamically adjust their
positions and orientations relative to neighboring agents to
ensure a common heading direction.
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At the start, the consensus problems are investigated with
accurate communications and fixed topologies, such as [9]–
[11]. Furthermore, [12] proposed the necessary and sufficient
conditions of average-consensus in the noise-free case and
asymptotic unbiased mean square average-consensus in the
case of stochastic noises.

However, due to the limited capacity of the communication
channel, only limited data can be transmitted over the channel
per unit of time. Therefore, in each time interval, only limited
bits of data can be exchanged between agents, which is
also called quantized information [13]–[15]. Since the wide
application of digital networks, the consensus problem over
capacity-limited networks has attracted a lot of interest. For
example, [16]–[20] considered the consensus problem with
quantized communication, which only needs finite bits in
transmission.

Furthermore, binary-valued information is a specialized
form of quantized information, with the transmission of just
one bit by simplifying communication into only true or
false states. Binary-valued communication significantly cuts
more communication costs than others, contributing to its
widespread and efficient application. As a result, some works
on the consensus problem have appeared based on binary-
valued communications [21]–[24]. [22] constructed a two-
time-scale control algorithm and proved that the MAS can
achieve weak consensus and mean square consensus. [23]
proposed a consensus algorithm based on recursive projection
and gave the mean-square consensus rate. [24] expanded the
system of [23] to high-order MASs, but with an orthogonal
limitation on the coefficient matrices.

It is worth noticing that all the consensus works men-
tioned above are for the fixed topology case. Actually, the
topologies of multi-agent networks usually switch over time
in practical networks due to the interference of some external
elements and the changes in the current circumstances. There
are some works that investigate the consensus problem of
MASs with switching topologies as well. For example, [25]
studied the case with accurate communications and switching
topologies that are jointly connected, simulating a simple
multi-agent collaboration model. [26] employed a recursive
projection identification algorithm to develop a control law and
proved that the first-order switching MAS with binary-valued
communications can reach consensus with this control law.
[27] proposed a control law based on an adaptive encoding-
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decoding scheme, demonstrating that the high-order switching
MAS without communication noises can exponentially achieve
consensus with finite bits of information.

Moreover, high-order systems play a critical role in var-
ious practical applications, such as formation control [1]–
[2], social networks [28], and so on. On the other hand,
given the widespread use of digital communication, binary-
valued communication holds significant practical value due
to its ability to reduce communication costs compared with
other methods substantially. However, binary-valued commu-
nications and switching topologies result in less transmitted
information, making theoretical analysis more complex, while
the inclusion of high-order systems leads to greater complexity
in the dynamics of MASs. Consequently, it is imperative and
challenging to address the consensus problem of high-order
MASs under binary-valued communications and switching
topologies, which is precisely the purpose of this paper. The
main contributions of this paper are as follows:

• This paper is the first to address the consensus problem
of MAS with a high-order system, binary-valued com-
munication, and switching topology simultaneously. In
contrast to the existing works [24] and [26], this paper has
a more general model. To be specific, the states of agents
in high-order MASs are dynamic even if the control input
is absent, whereas the states of first-order MASs in [26]
are static. Therefore, each agent needs to estimate its
neighbors’ states dynamically in this paper, which makes
state estimation more complicated. Besides, by jointly
analyzing the structure feature of the topology graph
and system model, this paper relaxes the limitation on
coefficient matrices in [24] and only requires the system
to be marginally stable. On the other hand, this paper
only requires binary-valued transmission and has a lower
communication cost than [27].

• An estimation-based consensus algorithm, consisting of
estimation and control, is designed. First, to overcome
the challenge of unknown states caused by binary-valued
communications, a recursive projection identification al-
gorithm is presented to estimate the neighbors’ states.
Then, a consensus control law is designed based on the
estimates of neighbors’ states. It is worth mentioning that
this paper introduces an adjustable coefficient into the
controller that removes the connectivity limitation on the
graph structure in [26].

• Two Lyapunov functions are designed to analyze the
consensus of all agents and the convergence of the
estimates, respectively. Through the analysis of these two
Lyapunov functions, this paper establishes the relation
between them to overcome the difficulty resulting from
the coupling of the estimation and control. At the proper
step coefficient, it is proven that the estimation errors of
neighbors’ states can converge to zero and the MAS can
achieve weak consensus. Furthermore, even without con-
nectivity constraint on the graph structure as mentioned
in [26], the convergence rate of the estimation errors and
the consensus rate can still reach the reciprocal of the
iteration number as [26].

The remainder of this paper is organized as follows: Section
II gives the preliminaries of basic concepts and graph theory
and describes the consensus problem. Section III introduces
the estimation-based consensus algorithm. The main results of
this paper are presented in Section IV, which include the main
convergence and consensus results. In Section V, a simulation
example is given. Section VI is the summary and prospect of
this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first give some basic concepts in matrix
and graph theory, and subsequently formulate the system
model and the consensus problems investigated in this paper.

A. Basic concepts

We use x ∈ Rn and A ∈ Rn×m to denote n-dimensional
column vector and n×m-dimensional real matrix, respectively.
Denote 0⃗m = [0, . . . , 0]T ∈ Rm, where the notation T denotes
the transpose operator. Moreover, we denote ∥x∥ = ∥x∥2
and ∥A∥ =

√
λmax(AAT ) as the Euclidean norm of vector

and matrix, respectively, where λmax(·) denotes the largest
eigenvalue of the matrix. Correspondingly, λmin(·) denotes
the smallest eigenvalue of the matrix. For symmetric matrices
A ∈ Rm×m and B ∈ Rm×m, A ≥ B represents that A − B
is a positive semi-definite matrix. diag{·} denotes the block-
diagonal matrix. And, for arbitrary matrices A = [aij ] ∈
Rm×n and B ∈ Rp×q , the Kronecker product of A,B is
defined as

A⊗B ≜


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB

 ∈ Rmp×nq.

Besides, the mathematical expectation is denoted as E[·].

B. Graph theory

In order to describe the relation between agents, we intro-
duce a time-varying topology Gm(t) = (N0, Em(t)), where
m(t) ∈ {1, 2, . . . , h} is a time-varying function, N0 =
{1, . . . , N} is the set of agents, and Em(t) ⊆ N0 ×N0 is the
ordered edges set of the topology Gm(t). Moreover, assume
Gm(t) ∈ {G1, G2, . . . , Gh} and Em(t) ∈ {E1, E2, . . . , Eh}.
Denote Nm(t)

i as the neighbor set of the agent i in the topology
Gm(t). Denote the adjacency matrix of the N agents at time
t as Am(t), where each element of the matrix Am(t) satisfies
a
m(t)
ij = 1 if (i, j) ∈ Em(t), else a

m(t)
ij = 0. Denote the degree

matrix of the N agents at time t as Dm(t), where Dm(t) =

diag{dm(t)
1 , d

m(t)
2 , . . . , d

m(t)
N } and d

m(t)
i is the degree of agent

i at time t. Then, the Laplace matrix of Gm(t) is defined as
Lm(t) = Dm(t) −Am(t).

C. Problem formulation

Consider the following MAS with N agents at time t:

xi(t+ 1) = Axi(t) +Bui(t), i = 1, . . . , N, (1)
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where A ∈ Rn×n and B ∈ Rn×m are constant matrices,
xi(t) ∈ Rn is the state of the agent i at time t, and ui(t) ∈ Rm

is the control input of the agent i at time t.
Remark 1: As mentioned earlier, the consensus problem of

high-order MASs has wide applications. Such as formation
control issues on a plane or in space, where agent states
xi(t) are typically represented as two-dimensional or three-
dimensional vectors [1]–[2]. Besides, high-order system mod-
els are frequently encountered in social networks [28], such
as when people simultaneously participate in discussions on
multiple topics with state xi(t) in (1). Consequently, compared
with first-order systems, high-order systems are more general
and more commonly used in the real world. In addition, the
system model of the form (1) is a typical high-order MAS,
widely employed in [24], [27], [29] and [30].

The agent i receives the following binary-valued informa-
tion with communication noise from its neighbor j:{

yij(t) = xj(t) + dij(t),

sij(t) = 1{yij(t)≤cij},
(2)

where the agent j is the neighbor of the agent i at time t,
dij(t) ∈ Rn is the communicating noise, yij(t) ∈ Rn is the
virtual output, cij ∈ Rn is the threshold value, sij(t) is the
binary-valued information that the agent i collects from its
neighbor j, 1{a≤c} is the indicative function defined as:

1{a≤c} =
[
1{a(1)≤c(1)},1{a(2)≤c(2)}, . . . ,1{a(n)≤c(n)}

]T
,

with a = [a(1), a(2), . . . , a(n)]T , c = [c(1), c(2), . . . , c(n)]T ,
and for k = 1, 2, . . . , n,

1{a(k)≤c(k)} =

{
1, a(k) ≤ c(k),

0, a(k) > c(k).

Remark 2: The communication form of 1{a≤c} is com-
monly used in the communication field, such as [31]–
[34]. In order to provide a clear understanding of the
definition of 1{a≤c}, an example is given as follows: If
a = [−1, 2, 5,−3, 0]T , c = [0, 0, 0, 0, 0]T , then, 1{a≤c} =
[1, 0, 0, 1, 1]T .

In order to proceed with our analysis, we introduce some
assumptions about the graph, the noise, and the system coef-
ficients.

Assumption 1: {G1, G2, . . . , Gh} are jointly connected and
Gi emerges at time t with a probability pi(> 0), for i =
1, 2, . . . , h, where

∑h
i=1 pi = 1.

Assumption 2: The noise dij(t) is independent identically
normally distributed as N(0, δ2In) for i, j, t, which implies
that each element of dij(t) has the same distribution function
F (·) and the associated density function f(·), respectively.

Assumption 3: Lm(t) and dij(t) are independent. Besides,
Lm(t) and Lm(l) are independent for t ̸= l.

Assumption 4: The system matrix A is an orthogonal ma-
trix, and B is of full row rank.

Remark 3: Actually, by Remark 2.3 of [35], we know
that Assumption 4 can be relaxed to the case where the
matrix A is neutrally stable, which is common in the model
assumptions and practical applications, such as [27], [35]–
[38]. If the matrix A is neutrally stable but not orthogonal,

there is a nonsingular matrix O such that Ã = O−1AO is
orthogonal. Let x̃i(t) = O−1xi(t) and B̃ = O−1B. Then,
x̃i(t+ 1) = Ãx̃i(t) + B̃ui(t), where Ã is orthogonal, B̃ is of
full row rank.

Moreover, Assumption 4 can be relaxed to the case that
the matrix A is marginally stable. In detail, by Remark 2.2
of [35], we know that if the matrix A is marginally stable
but not neutrally stable, then there is a nonsingular matrix T

such that TAT−1 =

[
As 0
0 Au

]
, where As is stable and Au is

neutrally stable. And as [39] says, since the MAS with a stable
coefficient matrix As can reach consensus even if the control
input is zero, we just need to focus on the neutrally stable part
Au. In contrast to Assumption 2 in [24], Assumption 4 in this
paper is more general, which relaxes the restrictions on the
coefficient matrices.

Now, we introduce the concept of weak consensus and the
problem to be studied.

Definition 1: ([40, Definition 2] Weak Consensus). Denote
xi(t) as the state of agent i at time t, where i = 1, . . . , N .
For all agents, if xi(t), i = 1, . . . , N, satisfy:

(1) E∥xi(t)∥2 < ∞, i = 1, . . . , N ; and
(2) limt→∞ E∥xi(t) − xj(t)∥2 = 0, i, j ∈ {1, . . . , N}.

Then, the agents are said to achieve weak consensus.
Problem: The goal of this paper is to design a controller

ui(t) based on binary-valued communications sij(t) and
switching topologies Gm(t) to achieve weak consensus.

III. ALGORITHM DESIGN

This section focuses on the design of a consensus control
algorithm. In general, the consensus control is designed by
using the accurate states of the neighbors, as mentioned in [9]–
[12] and [25]. However, in this paper, the agent can only obtain
binary-valued communications from its neighbors. A straight-
forward idea is to replace the accurate states of neighbors with
their estimates, so each agent should estimate its neighbors’
states firstly by the binary-valued communications, and then,
design the consensus control based on these estimates.

Based on the above idea, we propose an estimation-based
consensus algorithm involving both estimation and control,
named as Algorithm 1.

Algorithm 1 Estimation-Based Consensus Algorithm
i) Initiation: Denote the integer t0(> 0) as the initial time.
xi(t0 +1) = x0

i is the initial state of the agent i, x̂ij(t0) =
x0
ij is the initial estimate of the agent j estimated by the

agent i. And, denote M as the upper boundary for the norm
of these initial values, i.e., M ≥ ∥x0

i ∥, M ≥ ∥x0
ij∥. For

t ≥ t0 + 1, the algorithm is as follows.
ii) Observation: each agent i gets the binary-valued obser-
vations from its neighbors{

yij(t) = xj(t) + dij(t),

sij(t) = 1{yij(t)≤cij},

where j ∈ N
m(t)
i , i = 1, . . . , N , m(t) ∈ {1, . . . , h}.
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iii) Estimation: each agent i estimates the state of its
neighbor agent j at time t by

x̂ij(t) = ΠM

{
Ax̂ij(t−1)+

β

t

(
F
(
cij−Ax̂ij(t−1)

)
−sij(t)

)}
,

(3)
where j ∈ N

m(t)
i , β is the step coefficient for estima-

tion updating, F(z) = [F (z1), . . . , F (zn)]
T for any z =

[z1, z2, . . . , zn]
T ∈ Rn, ΠM (·) is a projection mapping

defined as

ΠM (ζ) = argmin
∥ξ∥≤M

∥ζ − ξ∥,∀ζ ∈ Rn. (4)

iv) Controller: based on these estimates, each agent i
designs its control by

ui(t) =
γ

(t+ 1)dmax
BTA

∑
j∈N

m(t)
i

(
x̂ij(t)− xi(t)

)
, (5)

where dmax = max
1≤i≤N,1≤m(t)≤h

{dm(t)
i }, 0 < γ < ∞.

v) Repeat: Let t = t+ 1, go back to Step ii).

Remark 4: At the first step of Algorithm 1, the initial value
of the estimate can be chosen arbitrarily, i.e., can be any given
real number. The boundary M is then selected according to the
initial values of states and estimates, which is a piece of global
information of the MAS. By using the projection operator
with boundary M , both the estimates and values of agents’
states are constrained within the bounds of M as outlined
in Algorithm 1. In other words, for any given system, the
estimation-based consensus algorithm designed here can make
the system consensus in the range determined by the initial
values.

Remark 5: The projection mapping ΠM is used to guar-
antee the boundness of the estimates and good convergence
effect in the initial iterative process of the algorithm, which
is common in binary-valued identification, such as [23], [26],
and [41]. It is used to construct the damping compression coef-
ficients in the convergence analysis of the algorithm designed
by the noise distribution function under binary-valued data.

Besides, as [41, Proposition 6] says, the projection mapping
given by (4) has the following property:

∥ΠM (x1)−ΠM (x2)∥ ≤ ∥x1 − x2∥,∀x1, x2 ∈ Rn.
Remark 6: By (1) and (5), the state of the agent i is updated

as xi(t+1) = Axi(t)+
γBBTA

(t+1)dmax

∑
j∈N

m(t)
i

(
x̂ij(t)−xi(t)

)
.

For the convenience of the subsequent analysis, we rewrite
the above estimation and update in vector form.

Firstly, define x(t) = [xT
1 (t), x

T
2 (t), . . . , x

T
N (t)]T ∈ RnN .

Then, denote the jointly connected topology formed by
G1, G2, . . . , Gh as G = (N0, E), where E = E1 ∪ · · · ∪ Eh

is the set of all the edges. Next, we consider the agent i in
the jointly connected graph G, denote di as its degree and Ni

as the set of its neighbors and d =
∑N

i=1 di. Based on these,
denote

x̂(t) =[x̂T
1r1(t), x̂

T
1r2(t), . . . , x̂

T
1rd1

(t), . . . , x̂T
ird1+...+di−1+1

(t),

. . . , x̂T
ird1+...+di

(t), . . . , x̂T
Nrd1+...+dN

(t)]T ∈ Rnd,

where rd1+d2+...+di−1+1, . . . , rd1+...+di
∈ Ni for i = 1, 2,

. . . , N .

Similarly, denote

S(t) =[sT1r1(t), s
T
1r2(t), . . . , s

T
1rd1

(t), . . . , sTird1+...+di−1+1
(t),

. . . , sTird1+...+di
(t), . . . , sTNrd1+...+dN

(t)]T ∈ Rnd,

and

C =[cT1r1 , c
T
1r2 , . . . , c

T
1rd1

, . . . , cTird1+...+di−1+1
, . . . ,

cTird1+...+di
, . . . , cTNrd1+...+dN

]T ∈ Rnd.

Without loss of generality, assume the subscript rs in vector
x̂(t) represents the neighbor j of agent i, i.e., x̂irs(t) = x̂ij(t),
where rs ∈ Ni, s ∈ {d1+d2+. . .+di−1+1, . . . , d1+. . .+di}.
Based on the above notations, we construct three matrices to
establish the relation of the states of agents and their estimates.

Pm(t) is designed to select each neighbor of each agent at
time t. Define Pm(t) = diag{p11m(t), p

22
m(t), . . . , p

dd
m(t)} ∈ Rd×d,

where pssm(t) = 1 when (i, rs) ∈ Em(t), else pssm(t) = 0.
Q is designed to select the true state of the agent that

correlates with its estimate. Define Q = [Q1r1 , . . . , Q1rd1
,

. . . , QNrd1+...+dN−1+1
, . . . , QNrd1+...+dN

]T ∈ Rd×N , where
Qirs = Qij = [⃗0Tj−1, 1, 0⃗

T
N−j ]

T ∈ RN for (i, rs) ∈ E, else
Qirs = 0⃗N .
Wm(t) is designed to select the neighbor set of each agent

at time t. Define Wm(t) = [W 1
m(t), . . . ,W

N
m(t)]

T ∈ RN×d,

where W i
m(t) = [⃗0d1+...+di−1

, b1, . . . , bdi
, 0⃗di+1+...+dN

]T ∈
Rd for i ∈ {1, . . . , N}, ∀ki ∈ {1, . . . , di}, bki

= 1 when
(i, rki+d1+...+di−1

) ∈ Em(t), else bki
= 1.

Based on the above matrices, the vector forms of estimation
and update are given as follows:

1.Estimation:

x̂(t) =ΠM

{
(Id ⊗A)x̂(t− 1) +

β

t
(Pm(t) ⊗ In)

(
ΦF (C−

(Id ⊗A)x̂(t− 1))− s(t)
)}

, (6)

where ΠM (z) = [ΠT
M (z1), . . . ,Π

T
M (zd)]

T , ΦF (z) =
[FT (z1), . . . ,FT (zd)]

T , for any z = [zT1 , z
T
2 , . . . , z

T
d ]

T ∈
Rnd, zk ∈ Rn for k = 1, . . . , d.

2.Update:

x(t+ 1) =
(
IN ⊗A− γ

(t+ 1)dmax
Lm(t) ⊗BBTA

)
x(t)

+
γ

(t+ 1)dmax
(Wm(t) ⊗BBTA)ε(t), (7)

where ε(t) = x̂(t)− (Q⊗ In)x(t) is the estimation error.

IV. MAIN RESULT

In this section, we will show that all agents can reach weak
consensus and give the corresponding consensus rate.

To prove each agent can achieve weak consensus, we give
the following lemmas first.

Lemma 1: ([26]). Denote Ľ =
∑h

i=1 piLi. If Assumption
1 holds, then matrix Ľ has the following properties:

i) Ľ is a nonnegative definite matrix with rank n− 1.
ii) Ľ2 ≥ λ2

2

λN
Ľ, where λ2 and λN are the smallest positive

eigenvalue and the largest eigenvalue of Ľ, respectively.
Lemma 2: The agent states xi(t) and the estimates x̂ij(t)

are all bounded, i.e., ∥xi(t)∥ ≤ M and ∥x̂ij(t)∥ ≤ M , where
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M is the upper boundary for the norm of initial values, i =
1, 2, . . . , N , j ∈ N

m(t)
i , t ≥ t0 + 1.

Proof: First, due to the definition of M , we can get
∥x0

i ∥ ≤ M, ∥x0
ij∥ ≤ M . By the estimation (3) and the

definition of ΠM (·) (4), we have ∥x̂ij(t)∥ ≤ M for t ≥ t0+1.
Then, assume that ∥xi(k)∥ ≤ M for k = t0+1, t0+2, . . . , t,

we have
i) When there is no neighbor of the agent i at time t, by

Remark 6, we can get xi(t + 1) = Axi(t). Since A is an
orthogonal matrix, we have ∥xi(t + 1)∥ ≤ ∥A∥∥xi(t)∥ ≤
∥xi(t)∥ ≤ M.

ii) When there exists neighbor of the agent i at time t, by
Remark 6, we can get

∥xi(t+ 1)∥

=
∥∥∥Axi(t) +

γBBTA

(t+ 1)dmax

∑
j∈N

m(t)
i

(
x̂ij(t)− xi(t)

)∥∥∥
=
∥∥∥Axi(t)−

d
m(t)
i γBBT

(t+ 1)dmax
Axi(t) +

d
m(t)
i γBBTA

(t+ 1)dmax

·
∑

j∈N
m(t)
i

1

d
m(t)
i

x̂ij(t)
∥∥∥

=
∥∥∥(In − d

m(t)
i γBBT

(t+ 1)dmax

)
Axi(t) +

d
m(t)
i γBBT

(t+ 1)dmax

·A
∑

j∈N
m(t)
i

1

d
m(t)
i

x̂ij(t)
∥∥∥.

Since d
m(t)
i > 0 and

∑
j∈N

m(t)
i

1

d
m(t)
i

= d
m(t)
i

1

d
m(t)
i

=

1, we have
∥∥A∑

j∈N
m(t)
i

1

d
m(t)
i

x̂ij(t)
∥∥ ≤ ∥A∥

∥∥∑
j∈N

m(t)
i

1

d
m(t)
i

x̂ij(t)
∥∥ ≤ M .

Moreover, for arbitrary γ, we can choose an initial time
t0 that satisfies 0 <

d
m(t)
i γBBT

(t+1)dmax
< In when t ≥ t0 + 1. Since

∥(In−
d
m(t)
i γBBT

(t+1)dmax
)+

d
m(t)
i γBBT

(t+1)dmax
∥ = ∥In∥ = 1 and ∥Axi(t)∥ ≤

M , we can get

∥xi(t+ 1)∥ ≤
∥∥∥(In − d

m(t)
i γBBT

(t+ 1)dmax

)
M +

d
m(t)
i γBBT

(t+ 1)dmax
M

∥∥∥
≤M.

Thus, by induction, we have ∥xi(t)∥ ≤ M for all t ≥ t0+1.
The lemma is proved.

Then, to jointly analyze the structure of the topology graph
and system model, we provide the following lemma.

Lemma 3: For positive semi-definite matrices Ai ∈ Rn×n

and Bi ∈ Rm×m(i = 1, 2), if A1 ≥ A2 and B1 ≥ B2, then

A1 ⊗B1 ≥ A2 ⊗B2.
Proof: For arbitrary positive semi-definite matrices A ∈

Rn×n, B ∈ Rm×m, denote λ1, λ2, . . . , λn and µ1, µ2, . . . , µm

as the eigenvalues of A and B, respectively. Then, by the
Theorem 4.2.12 in [42], λiµj are the eigenvalues of A ⊗ B,
i = 1, . . . , n, j = 1, . . . ,m. Since A ≥ 0 and B ≥ 0, we have
λi ≥ 0 and µj ≥ 0, thus λiµj ≥ 0.

Then, by the definition of the Kronecker product, we have
(A⊗B)T = AT ⊗BT = A⊗B, i.e., A⊗B is symmetric as
well. This together with λiµj ≥ 0, yields A⊗B ≥ 0.

From the above conclusion and the distributive property of
Kronecker product, we have

A1 ⊗B1 −A2 ⊗B1 =(A1 −A2)⊗B1 ≥ 0,

A2 ⊗B1 −A2 ⊗B2 =A2 ⊗ (B1 −B2) ≥ 0.

Thus, we have A1 ⊗B1 ≥ A2 ⊗B1 ≥ A2 ⊗B2.
Next, we introduce two Lyapunov functions, V (t) and R(t),

to analyze the weak consensus of all agents and the conver-
gence properties of estimates, respectively. These functions are
defined as follows:

V (t) = E[xT (t)(Lm(t) ⊗ In)x(t)], (8)

R(t) = E[εT (t)ε(t)]. (9)

Then, the following two lemmas show the coupling relations
of the two Lyapunov functions.

Lemma 4: Under Assumptions 1-4, V (t) satisfies

V (t) ≤
(
1− 3γλ2

2λab

2tλNdmax

)
V (t− 1) +

2γλWλNλ2
AB

tdmaxλ2
2λab

·R(t− 1) +
B̂

t2
,

where λab = λmin(A
TBBTA), λAB = λmax(A

TBBTA),
λW = max

1≤i≤h
{λmax{WT

i ĽWi}}, B̂ is a constant.

Proof: See proof in Appendix I.
Lemma 5: Under Assumptions 1-4, R(t) satisfies

R(t) ≤
(
1− 1

tdmax

(
2βpminfMdmax − γα

))
R(t− 1)

+
2γλWλNλ2

AB

tdmaxλ2
2λab

V (t− 1) +
B̃

t2
,

where pmin = min
1≤i≤h

{pi}, fM = min
i,j,k

f(|cijk| + M), cijk

is the kth element of cij , λQL = max
1≤i≤h

{λmax{QLiQ
T }},

λQ = λmax{QQT }, λW̌ = max
1≤i≤h

{λmax{WT
i Wi}}, α =

λ2
2λQLλab

2λNλW
+ 2λAB

√
λQλW̌ , B̃ is a constant.

Proof: See proof in Appendix II.
By Lemmas 4-5, we establish the relation between these

two Lyapunov functions. Then, a new function Z(t) =
(V (t), R(t))T is constructed to jointly analyze their properties,
to overcome the difficulty resulting from the coupling of the
estimation and control.

Lemma 6: ([26]). If Assumptions 1-4 hold, then

∥Z(t)∥ ≤ ∥(I − 1

t
U)Z(t− 1)∥+ 1

t2
∥H∥,

∥Z(t)∥ =


O
(

1
tλmin(U)

)
, λmin(U) < 1;

O
(
ln t
t

)
, λmin(U) = 1;

O
(
1
t

)
, λmin(U) > 1,

where U =

[
u1 u2

u2 u4

]
, H =

[
B̂, B̃

]T
, u1 =

3γλ2
2λab

2λNdmax
, u2 =

−2γλWλNλ2
AB

dmaxλ2
2λab

, u4 = 1
dmax

(
2βpminfMdmax − γα

)
, α is the

same as in Lemma 5.
Remark 7: Noticing that 0 ≤ V (t) ≤ ∥Z(t)∥ and 0 ≤

R(t) ≤ ∥Z(t)∥, we can transform the analysis of weak
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consensus and estimate convergence property into analyzing
the convergence of Z(t).

Theorem 1: Under Assumptions 1-4, the switching MAS
(1)-(2) reach weak consensus and the estimates of states
converge to the real states, i.e.,

lim
t→∞

E[∥xi(t)− xj(t)∥2] = 0,

lim
t→∞

E[∥x̂ij(t)− xj(t)∥2] = 0,

when β > 1
2pminfM

(u2
2

u1
+ γα

dmax

)
with u1, u2 and α being given

in Lemmas 5-6.
Proof: Let |λI−U | = (λ−u1)(λ−u4)−u2

2 = 0. Then,

λmin(U) =
1

2

(
u1 + u4 −

√
(u1 + u4)2 − 4(u1u4 − u2

2)
)
.

If β > 1
2pminfM

(u2
2

u1
+ γα

dmax

)
, then we have u1u4 > u2

2.
Since u1 > 0 and u1u4 > u2

2, λmin(U) > 0.
By Lemma 6, we have

∥Z(t)∥ =


O
(

1
tλmin(U)

)
, λmin(U) < 1;

O
(
ln t
t

)
, λmin(U) = 1;

O
(
1
t

)
, λmin(U) > 1,

And since λmin(U) > 0, there is limt→∞ ∥Z(t)∥ = 0.
By Remark 7, we have

lim
t→∞

V (t) = 0, lim
t→∞

R(t) = 0. (10)

Denote the Laplacian matrix of G as LG and
∑h

i=1 Li −
LG ≜ L∑

−G. By the relation between {G1, G2, . . . , Gh} and
G, we know that L∑

−G is a Laplacian matrix of a weighted
graph. Then, we have

∑h
i=1 Li − LG = L∑

−G ≥ 0, i.e.,∑h
i=1 Li ≥ LG. Since pi > 0 and

∑h
i=1 pi = 1, we have

LG ≤
h∑

i=1

Li ≤
h∑

i=1

pi
pmin

Li.

By Assumption 1, {G1, G2, . . . , Gh} are jointly connected,
then there exists a road between any different agents i and j
in the network G. Suppose the road is as follows:

i = r0 → r1 → r2 → · · · → rp−1 → rp = j, p ≤ N

which implies ri+1 ∈ Nri . Then, the mean square error of any
two different agents satisfies:

E[∥xi(t)− xj(t)∥2]
=E[∥

(
xr0(t)− xr1(t)

)
+
(
xr1(t)− xr2(t)

)
+ · · ·+

(
xrp−1

(t)− xrp(t)
)
∥2]

≤N

N∑
i=1

∑
j∈Ni

E[∥xi(t)− xj(t)∥2]

≤2NE[xT (t)(LG ⊗ In)x(t)]

≤2NE[xT (t)(

h∑
i=1

pi
pmin

Li ⊗ In)x(t)] =
2N

pmin
V (t) (11)

Meanwhile,

E[∥x̂ij(t)− xj(t)∥2] (12)

≤
N∑
i=1

∑
j∈Ni

E[∥x̂ij(t)− xj(t)∥2] = R(t).

Substituting (10) into (11)-(12) gives the theorem.
Theorem 2: Under Assumptions 1-4, the switching MAS

(1)-(2) reach weak consensus at the rate of O
(
1
t

)
, and the

covergence rate of the estimation error reach O( 1t ), i.e.,

E[∥xi(t)− xj(t)∥2] = O

(
1

t

)
,

E[∥x̂ij(t)− xj(t)∥2] = O

(
1

t

)
,

when β > 1
2pminfM

( u2
2

u1−1 +
γα

dmax
+1

)
, γ > 2λNdmax

3λ2
2λab

, with u1,
u2 and α being given in Lemmas 5-6.

Proof: Similar to the proof of Theorem 1, if β >
1

2pminfM

( u2
2

u1−1 + γα
dmax

+ 1
)
, we have

u4 >
u2
2

u1 − 1
+ 1.

If γ > 2λNdmax

3λ2
2λab

, then, u1−1 > 0, u4(u1−1) > u2
2+u1−1.

Therefore,

(u1 + u4)
2 − 4(u1u4 − u2

2) < (u1 + u4 − 2)2,

and hence, we have λmin(U) > 1. By Lemma 6, we have

∥Z(t)∥ = O

(
1

t

)
.

Then, by Remark 7, we have

V (t) = O

(
1

t

)
, R(t) = O

(
1

t

)
.

By (11)-(12), we can obtain the theorem.
Remark 8: Different from [23] and [26], this paper intro-

duces the coefficient γ into the controller, which removes the
previous constraint for the graph structure, such as λ2

2

λN
> 1 in

[23] and 3λ2
2

2λNdmax
> 1 in [26]. This implies that, by selecting

appropriate γ and β, the system can attain consensus and
convergence rates of O( 1t ), as long as the graphs are connected
or jointly connected.

V. NUMERICAL SIMULATION

This section will illustrate the theoretical results with a
simulation example.

Consider a third-order MAS that has three agents, the state
of the agent i is as follows:

xi(t+ 1) = Axi(t) +Bui(t), i = 1, 2, 3,

where A =

 0.5 0.5 −0.5
−0.5 −0.5 −0.5
1 1 0

, B =

 2 0 1
0.5 1.5 0
0 0 2

. A

is not orthogonal but neutrally stable, as indicated in Remark
3, since its eigenvalues are {0, i,−i}. On the other hand, B is
of full row rank, satisfying Assumption 4. Therefore, both A
and B are satisfying the underlying conditions of this paper.

The switching topologies are shown in Figure 1, with
p1 = 7/24, p2 = 1/3, p3 = 3/8. These topologies are jointly
connected and satisfy Assumption 1.
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Fig. 2. The estimates of neighbors’ states

Fig. 3. The states of agents

Fig. 4. The trajectory of the logarithm of MSE

1

3 2

1

3 2

(a) G1 (b) G2

1

3 2

(c) G3

Fig. 1. switching topologies

Besides, we assume the communication noises between
agents are distributed as N(0, 64 · I3), which satisfies As-
sumptions 2-3. Take the initial state as x0 = (2, 2, 2, 1, 1, 1,
3, 3, 3)T , and the initial estimate as x̂0 = (0, 0, 0, 2, 2, 2,

2, 2, 2,−3,−3,−3, 1, 1, 1,−2,−2,−2)T , and set the bound-
ary M = 8. Then, by Theorems 1-2, set β = 3000 and
γ = 0.9, using the Estimation-Based Consensus Algorithm,
one can get the following simulation results.

As shown in Figs. 2-3, the states of all agents reach
consensus, and the estimates of the neighbors’ states also
approach their real states. Besides, Fig. 4 illustrates that the
estimation errors can converge to 0 at the rate of O( 1t ) and
each agent can reach weak consensus at the same rate.

VI. CONCLUSIONS

The consensus problem of high-order MASs with binary-
valued communications and switching topologies is studied in
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this paper. An estimation-based consensus algorithm, consist-
ing of estimation and control, is designed. And, a method that
jointly analyzes the structure of the topology graph and system
model is employed to overcome the complexity of high-
order MASs. By constructing and analyzing two Lyapunov
functions about estimation error and consensus error, this
paper overcomes the difficulty resulting from the coupling of
the estimation and control and proves that the estimation error
can converge to zero and all agents can reach weak consensus.
Moreover, it is also shown that the rate of convergence and
consensus can both reach the reciprocal of the iteration times.

In the future, there will be many interesting problems in the
consensus problem of high-order MAS under binary-valued
communications. For example, if the coefficient matrix A is
unstable, is the algorithm described in this paper still valid?
If not, how can we improve the algorithm?

APPENDIX I
THE PROOF OF LEMMA 4

Let

V1 =E
[
xT (t− 1)

(
IN ⊗AT −

γLm(t−1)

tdmax
⊗ATBBT

)(
Lm(t)

⊗ In
)(

IN ⊗A−
γLm(t−1)

tdmax
⊗BBTA

)
x(t− 1)

]
,

V2 =
2γ

tdmax
E
[
xT (t− 1)

(
IN ⊗AT −

γLm(t−1)

tdmax
⊗ATBBT

)
·
(
Lm(t) ⊗ In

)(
Wm(t−1) ⊗BBTA

)
ε(t− 1)

]
,

V3 =
γ2

t2d2max

E
[
εT (t− 1)

(
WT

m(t−1) ⊗ATBBT
)(
Lm(t) ⊗ In

)
·
(
Wm(t−1) ⊗BBTA

)
ε(t− 1)

]
.

Then, from (7)-(8), it follows that

V (t) = E[xT (t)(Lm(t) ⊗ In)x(t)] = V1 + V2 + V3. (A1)

Firstly, by the property of conditional expectation, we
get E[xT (t)(Lm(t) ⊗ In)x(t)] = E

[
E[xT (t)(Lm(t) ⊗ In)

x(t)
∣∣x(t)]] = E[xT (t)(Ľ ⊗ In)x(t)]. Similarly, by Assump-

tions 2-3, we have

V1 =E
[
E
[
xT (t− 1)

(
IN ⊗AT −

γLm(t−1)

tdmax
⊗ATBBT

)
·
(
Ľ⊗ In

)(
IN ⊗A−

γLm(t−1)

tdmax
⊗BBTA

)
x(t− 1)∣∣x(t− 1)

]]
=E

[
xT (t− 1)

(
Ľ⊗ In − 2γĽ2 ⊗ATBBTA

tdmax
+

γ2

t2d2max

· E
[
(Lm(t−1)ĽLm(t−1))⊗ATBBTBBTA

])
x(t− 1)

]
.

Moreover, by Lemmas 1-3, we have Ľ2 ⊗ ATBBTA ≥
(
λ2
2

λN
Ľ)⊗ (λabIn) =

λ2
2λab

λN
Ľ⊗ In, and

E
[
xT (t− 1)

(
Ľ⊗ In − 2γĽ2 ⊗ATBBTA

tdmax

)
x(t− 1)

]
≤(1− 2γλ2

2λab

tλNdmax
)E[xT (t− 1)(Ľ⊗ In)x(t− 1)].

Then, by Lemma 2, we have

V1 ≤ (1− 2γλ2
2λab

tλNdmax
)V (t− 1) +

B1

t2
, (A2)

where 0 < B1 < ∞.

Similarly, by Assumptions 2-3, we obtain

V2 =
2γ

tdmax
E
[
E
[
xT (t− 1)

(
IN ⊗AT −

γLm(t−1)

tdmax
⊗ATB

·BT
)(
Lm(t) ⊗ In

)(
Wm(t−1) ⊗BBTA

)
ε(t− 1)∣∣x(t− 1), x̂(t− 1), Lm(t−1)

]]
=

2γ

tdmax
E
[
xT (t− 1)

(
IN ⊗AT −

γLm(t−1)

tdmax
⊗ATBBT

)
·
(
Ľ⊗ In)(Wm(t−1) ⊗BBTA

)
ε(t− 1)

]
.

Since Ľ is a positive semi-definite matrix, there exists
a matrix L̃ such that Ľ = L̃T L̃. Then, substituting this
decomposition into the above equation and using the Schwarz
inequality gives

V2 ≤ 2γ

tdmax

(
E
[
xT (t− 1)

(
IN ⊗AT −

γLm(t−1)

tdmax
⊗ATBBT

)
·
(
L̃T ⊗ In

)(
L̃⊗ In

)(
IN ⊗A−

γLm(t−1)

tdmax
⊗BBTA

)
x(t− 1)

]) 1
2 ·

(
E
[
εT (t− 1)

(
WT

m(t−1) ⊗ATBBT
)

(
L̃T L̃⊗ In

)
·
(
Wm(t−1) ⊗BBTA

)
ε(t− 1)

]) 1
2

.

By Assumption 4, we have AAT = In, λ(B) ̸= 0, and then,
λ(ATBBTBBTA) = λ(ATBBTAATBBTA) = λ2(ATB
BTA). By λ(WT

m(t−1)ĽWm(t−1)) ≤ λW , λ(ATBBTBBTA)

≤ λ2
AB , and Lemma 3, we have

V2 ≤ 2γ

tdmax

√[(
1− 2γλ2

2λab

tλNdmax

)
V (t− 1)

]
· [λWλ2

ABR(t− 1)]

+
B2

t2

≤ 2γ

tdmax

√
V (t− 1)λWλ2

ABR(t− 1) +
B2

t2

≤ γ

tdmax

(
λ2
2λab

2λN
V (t− 1) +

2λWλ2
ABλN

λ2
2λab

R(t− 1)

)
+

B2

t2
, (A3)

when t > max{ 2γλ2
2λab

λNdmax
, t0}, where 0 < B2 < ∞.

Since Q is a constant matrix, ε(t) is bounded. Moreover, A
is a constant matrix and Wm(t) is finite, thus

V3 ≤ B3

t2
, (A4)

where 0 < B3 < ∞.
By (A1)-(A4), we can obtain the lemma.
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APPENDIX II
THE PROOF OF LEMMA 5

Let

R2 =
2β

t
E
[
εT (t− 1)(Id ⊗AT )(Pm(t) ⊗ In)

·
(
ΦF (C − (Id ⊗A)x̂(t− 1))− s(t)

)]
,

R3 =
2γ

tdmax
E
[
εT (t− 1)

(
(QLm(t−1) ⊗ATBBTA)

· x(t− 1)− (QWm(t−1) ⊗ATBBTA)ε(t− 1)
)]
.

Then from (6), (9), Remark 5 and the definition of ε(t), we
have

R(t) = E[εT (t)ε(t)]

≤E
[(

(Id ⊗A)x̂(t− 1) +
β

t
(Pm(t) ⊗ In)

(
ΦF (C − (Id ⊗A)

· x̂(t− 1))− s(t)
)
− (Q⊗ In)x(t)

)T

·
(
(Id ⊗A)x̂(t− 1) +

β

t
(Pm(t) ⊗ In)

(
ΦF (C − (Id ⊗A)

· x̂(t− 1))− s(t)
)
− (Q⊗ In)x(t)

)]
=E

[(
εT (t− 1)(Id ⊗AT ) +

β

t

(
(Pm(t) ⊗ In)

(
ΦF (C − (Id⊗

A)x̂(t− 1))− s(t)
))T

+
γ

tdmax

[
xT (t− 1)(Lm(t−1)Q

T⊗

ATBBT )− εT (t− 1)(WT
m(t−1)Q

T ⊗ATBBT )
])

·
(
(Id ⊗A)ε(t− 1) +

β

t
(Pm(t) ⊗ In)

(
ΦF (C − (Id ⊗A)

· x̂(t− 1))− s(t)
)
+

γ

tdmax

[
(QLm(t−1) ⊗BBTA)

· x(t− 1)− (QWm(t−1) ⊗BBTA)ε(t− 1)
])]

≤R(t− 1) +R2 +R3 +
B4

t2
, (B1)

where 0 < B4 < ∞.
By the definition of s(t), we can obtain that E[s(t)] =

ΦF

(
C−(Q⊗In)x(t)

)
. Then, using the property of conditional

expectation, we get

R2 =
2β

t
E
[
εT (t− 1)(Id ⊗AT )

(
Pm(t) ⊗ In

)(
ΦF

(
C

− (Id ⊗A)x̂(t− 1)
)
− ΦF

(
C − (Q⊗ In)x(t)

))]
=
2β

t
E
[
εT (t− 1)(Id ⊗AT )

(
(

h∑
i=1

piPi)⊗ In
)(

ΦF

(
C

− (Id ⊗A)x̂(t− 1)
)
− ΦF

(
C − (Q⊗ In)x(t)

))]
.

And, denoting f⃗ = dF
dx , by Lagrange’s Mean Value Theo-

rem, we have

F
(
cij −Ax̂ij(t− 1)

)
−F

(
cij − xj(t)

)
=− f⃗(ξij(t))

(
Ax̂ij(t− 1)− xj(t)

)
,

where ξij(t) is between cij −Ax̂ij(t− 1) and cij − xj(t).
Then, let ξ(t) = (ξT1r1(t), . . . , ξ

T
irs

(t), . . . , ξTNrd1+...+dN
(t))T ,

with rs representing the neighbor j of agent i, i.e.,

ξirs(t) = ξij(t). Denote diag(Φf (ξ(t))) as a diagonal matrix
generated by each dimension of Φf (ξ(t)), with Φf = dΦF

dx .
By Lemma 2, ξij(t) is bounded. Since the function Φf is
continuous, we have diag

(
Φf (ξ(t))

)
≥ fM · Ind and

ΦF

(
C − (Id ⊗A)x̂(t− 1)

)
− ΦF

(
C − (Q⊗ In)x(t)

)
=− diag

(
Φf (ξ(t))

)(
(Id ⊗A)x̂(t− 1)− (Q⊗ In)x(t)

)
=− diag

(
Φf (ξ(t))

)(
(Id ⊗A)ε(t− 1) +

γ

tdmax

[(
QLm(t−1)

⊗BBTA
)
x(t− 1)−

(
QWm(t−1) ⊗BBTA

)
ε(t− 1)

])
.

Then, we have

R2 =− 2β

t
E
[
εT (t− 1)(Id ⊗AT )

(
(

h∑
i=1

piPi)⊗ In
)

· diag
(
Φf (ξ(t))

)(
(Id ⊗A)ε(t− 1) +

γ

tdmax

[(
QLm(t−1)

⊗BBTA
)
x(t− 1)−

(
QWm(t−1) ⊗BBTA

)
ε(t− 1)

])
.

=− 2β

t
E
[
εT (t− 1)(Id ⊗AT )

(
(

h∑
i=1

piPi)⊗ In
)

· diag
(
Φf (ξ(t))

)
(Id ⊗A)ε(t− 1)

]
+

B5

t2
,

where 0 < B5 < ∞.
Subsequently, by Assumption 1 and the definition of Pm(t),

we can get
∑h

i=1 Pi ≥ Id, and then

R2 =− 2β

t
E
[
εT (t− 1)(Id ⊗AT )

(
(

h∑
i=1

piPi)⊗ In
)

· diag
(
Φf (ξ(t))

)
(Id ⊗A)ε(t− 1)

]
+

B5

t2

≤− 2βfM
t

E
[
εT (t− 1)(Id ⊗AT )

(
(

h∑
i=1

piPi)⊗ In
)

· (Id ⊗A)ε(t− 1)
]
+

B5

t2

≤− 2βpminfM
t

R(t− 1) +
B5

t2
. (B2)

In a similar way to V2, let Lm(t−1) = L̃T
m(t−1)L̃m(t−1) and

use the Schwarz inequality again. Then, we have
2γ

tdmax
E[εT (t− 1)(QLm(t−1) ⊗ATBBTA)x(t− 1)]

=E[εT (t− 1)(QL̃T
m(t−1) ⊗ATBBT )(L̃m(t−1) ⊗A)x(t− 1)]

≤ 2γ

tdmax

(
E[εT (t− 1)

(
(QL̃T

m(t−1)L̃m(t−1)Q
T )⊗ATBBT

·BBTA
)
ε(t− 1)]E[xT (t− 1)(L̃T

m(t−1)L̃m(t−1) ⊗ In)

· x(t− 1)]
)1/2

≤ 2γ

tdmax

√
λQLλ2

ABR(t− 1)V (t− 1)

≤ γ

tdmax

(λQLλ
2
2λab

2λNλW
R(t− 1) +

2λNλWλ2
AB

λ2
2λab

V (t− 1)
)
.

Since λW̌ and λQ are finite, we have

− 2γ

tdmax
E[εT (t− 1)(QWm(t−1) ⊗ATBBTA)ε(t− 1)]
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≤ 2γ

tdmax

(
E[εT (t− 1)(QQT ⊗ATBBTBBTA)ε(t− 1)]

) 1
2

·
(
E[εT (t− 1)(WT

m(t−1)Wm(t−1) ⊗ In)ε(t− 1)]
) 1

2

≤
2γλAB

√
λQλW̌

tdmax
R(t− 1).

Then, we can obtain

R3 ≤ γ

tdmax

(λQLλ
2
2λab

2λNλW
R(t− 1) +

2λNλWλ2
AB

λ2
2λab

V (t− 1)
)

+
2γλAB

√
λQλW̌

tdmax
R(t− 1)

=
γα

tdmax
R(t− 1) +

2γλNλWλ2
AB

tdmaxλ2
2λab

V (t− 1).

This together with (B1)-(B2) gives the lemma.
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